If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2=148
We move all terms to the left:
m^2-(148)=0
a = 1; b = 0; c = -148;
Δ = b2-4ac
Δ = 02-4·1·(-148)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{37}}{2*1}=\frac{0-4\sqrt{37}}{2} =-\frac{4\sqrt{37}}{2} =-2\sqrt{37} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{37}}{2*1}=\frac{0+4\sqrt{37}}{2} =\frac{4\sqrt{37}}{2} =2\sqrt{37} $
| 6=t/2 | | (1+2)÷3=x-5 | | 4x-1=2x+7x | | 6x+4-x=20-3x | | x+5/2=11 | | -2(4n+1)=8 | | ×-2=2x-4 | | 25/3=p/3 | | 15/3=8x+2(-8x) | | 5(x+2)=2(x+2)+3x | | 12x-14+10x=180 | | 56=8+1x-5x | | 3x+6x=25-7 | | 3(7/3x+4/3)-2x+8=5x+12 | | 3x-12=x^2-4x+3 | | 10+5/7x=25 | | -4=2(x-3)+4 | | 6x+2=16-3x | | 6.5y=3 | | -4=(x-3)+4 | | b-9=6b=30 | | 32+1x=50 | | -9+6g=-3g | | 2(12t+3)t=6 | | 275+d+1,091=12 | | 5-(3-2y)=8 | | 5(3x+1)=42 | | 5.4=4.2x-3 | | -2p-62=90 | | 7x-12=12x-22 | | 8x-(-3x)+13=134 | | u-2.73=4.9 |